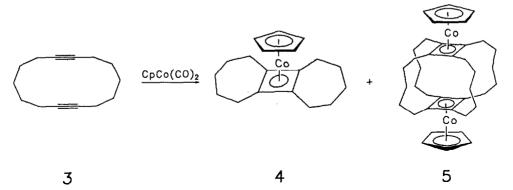
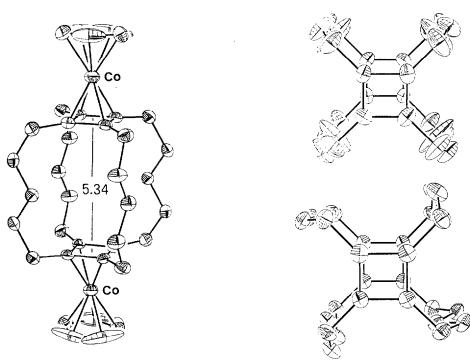

A ONE STEP SYNTHESIS OF A PENTAMETHYLENE-BRIDGED SUPERPHANE OF A CpCo-STABILIZED CYCLOBUTADIENE COMPLEX¹

Rolf Gleiter^a, Björn Treptow^a, Detlef Kratz^a and Bernhard Nuber^b


^aOrganisch-and ^bAnorganisch-Chemische Institute der Universität Heidelberg, Im Neuenheimer Feld 270, D 6900 Heidelberg (Germany).

Heating 1,8-cyclotetradecadiyne with dicarbonyl(η^5 -cyclo-pentadienyl)cobalt(CpCo(CO)₂) gives in 2-7% yield the [5₄]-(1,2,3,4)cyclobutadienophane complexed with two (C₅H₅)Co units in one step.

For the thermal reaction of cyclic nonconjugated diynes 1 with dicarbonyl(η^5 -cyclopentadienyl)cobalt (CpCo(CO)₂) or the corresponding complex with 1,4-cyclooctadiene (cod), CpCo(cod), the intramolecular reaction yielding a tricyclic cyclobutadiene complex 2 is the rule²⁻⁴. Exceptions are found in the case of 1,6-cyclodecadiyne³ and 1,5-cycloundecadiyne⁴.



A comparison of the yields obtained for the intramolecular complexes of 1,6-cyclodecadiyne $(6\%)^3$, 1,6-cycloundecadiyne $(32\%)^4$, 1,7-cyclododecadiyne $(86\%)^2$ and 1,7-cyclotridecadiyne $(65\%)^1$ suggests that the less strained cyclodiynes should give good yields of the intramolecular products 2. The low yields reported by King et al.² for 1,8cyclotetradecadiyne(3)(2-10% yield)⁵ led us to reinvestigate the reaction of 3 with $CpCo(CO)_2$. We are not only able to confirm the

relatively low yield reported for 4 in n-octane (16-18% with CpCo(CO)2, 29% with CpCo(cod)), but we were also able to isolate the intermolecular cycloaddition product 5, the $[5_{4}](1,2,3,4)$ cyclobutadienophane complexed with two CpCo units in 2-7% yield. By carrying out the reaction in decalin at 180° , we obtained 4 in 70% yield, while the yield of 5 remains on the order of 5-7%. To our knowledge this is the first CpCo-capped cyclobutadiene superphane with chains which are longer than three carbon atoms. So far, superphanes of metal complexed cyclobutadiene have been reported with trimethylene chains containing two CpCo-units, one CpCo and one Cp^*Co unit or one $Fe(CO)_2$ unit, respectively^{3,6}. The structural assignment of 5 reveals two crystallographically independent molecules⁷ in the unit cell whose long axes are inclined to each other by 75.3°. The pentamethylene bridges in both molecules adopt a zig-zag arrangement (Fig.1a) leading to a bend pin-wheel conformation. In one case this conformation is more rigid than in the other (Fig.1b). The distances between the cyclobutadiene units in 5 are found to be 5.34 Å and 5.37 Å, respectively. A similar zig-zag conformation has been found in 7,10,18,21-tetramethoxy[5.5]paracyclophane where both benzene

rings are separated by 5.1 $Å^8$.

Figure 1

- a) Side view of the molecular structure of 5.
- b) Thermal ellipsoids (40% probability) of the cyclobutadienophane skeletons of the two independent molecules of 5 in the unit cell. In both cases the hydrogens are omitted for clarity.

Table 1 Most relevant spectroscopic data of 4 and 5.

4: ¹H-NMR (CDCl₃, 300 MHz): δ =4.8 (s,5H), 2.1-1.9 (m,10H), 1.7-1.5 (m,8H), 1.0-0.8 (m,2H); ¹³C-NMR (CDCl₃, 300 MHz): δ =79.6, 78.8, 30.5, 27.9, 26.7. 5: ¹H-NMR (CDCl₃, 300 MHz): δ =4.4 (s,10H), 2.28 (s,br,16H), 1.27 (s,br,24H); ¹³C-NMR (CDCl₃,200 MHz): δ =80.7, 80.0, 30.0, 27.2, 26.3; IR (CDCl₃): ν [cm⁻¹]= 2924, 2848, 1429, 1310, 1261; UV/VIS (pentane): λ_{max} [nm](lg ϵ)=197(4.27), 225 sh(4.13), 266(4.43), 380(2.70).HRMS: calc. 624.2564; found 624.2576.

Acknowledgement. We are grateful to the Deutsche Forschungsgemeinschaft (SFB 247), the Fonds der Chemischen Industrie and the BASF Aktiengesellschaft for financial support.

References

- ¹ Dedicated to Professor Klaus Weinges on the occasion of his 65th birthday.
- ² King, R.B.; Efraty, A., J.Am.Chem.Soc.1970, 92, 6071-6073; King, R.B.; Efraty, A., J.Am.Chem.Soc.1972, 92, 3021-3025.
- ³ Gleiter, R.; Karcher, M.; Ziegler, M.L.; Nuber, B., Tetrahedron Lett. 1987, 28, 195-198; Gleiter, R.; Kratz, D., Tetrahedron Lett.1990, 31, 5893-5896.
- ⁴ Gleiter, R.; Kratz, D.; Ziegler, M.L.; Nuber, B., Tetrahedron Lett. 1990, 31, 6175-6178.
- ⁵ With CpCo(CO)₂ and CpCo(cod) the yields of 4 reported are 2-4% and 10%, respectively².
- ⁶ Gleiter, R.; Schehlmann, V. Angew.Chem. **1990**, 102, 1450-1452; Angew.Chem.Int.Ed.Engl. **1990**, 29, 1426-1427.
- ⁷ Unit cell constants for 5: a= 8.903(5)Å, b=9.520(6)Å, c=20.98(2)Å, α= 99.78(6), B=92.98(6), γ=113.57(4), V=1591.9 Å³, Z=2. Space group P1. Data were collected on a SYNTEX R3 diffractometer using a crystal of dimensions 0.04x0.35x0.5 mm³. Ω-scan (3.0<20<52.5°), MoK_α radiation; 5973 reflexions of which 3290 were judged to be independent (I>2.5σ(I)). All crystallographic calculations used the SHELXTL PLUS program package (January 1989). Empirical absorption corrections (6 reflexions, 8.0<20<40°). Relative range of transmissions factors 0.84-1.00 (µ=11 cm⁻¹). Least squares refinement with (w=1/σ²(F)). The structure was solved by direct methods (TREF, SHELXTL PLUS). The hydrogen atoms were located by option HFIX of the SHELXTL PLUS program; R=0.064, R_w=0.055. Complete structural data have been submitted to the **Cambridge University Crystallographic Center**.

(Received in Germany 16 December 1991)